Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit.

نویسندگان

  • A M Zagoskin
  • E Il'ichev
  • M W McCutcheon
  • Jeff F Young
  • Franco Nori
چکیده

Superconducting oscillators have been successfully used for quantum control and readout devices in conjunction with superconducting qubits. Also, squeezed states can improve the accuracy of measurements to subquantum, or at least subthermal, levels. Here, we show theoretically how to produce squeezed states of microwave radiation in a superconducting oscillator with tunable parameters. Its resonance frequency can be changed by controlling an rf SQUID inductively coupled to the oscillator. By repeatedly shifting the resonance frequency between any two values, it is possible to produce squeezed and subthermal states of the electromagnetic field in the (0.1-10) GHz range, even when the relative frequency change is small. We propose experimental protocols for the verification of squeezed state generation, and for their use to improve the readout fidelity when such oscillators serve as quantum transducers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Traveling Odd Schrödinger Cat States in Circuit-QED

We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED). A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon...

متن کامل

Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

Squeezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers fr...

متن کامل

Microwave photon Fock state generation by stimulated Raman adiabatic passage

The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate...

متن کامل

Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities.

We investigate the electromechanical coupling between a nanomechanical resonator and two parametrically coupled superconducting coplanar waveguide cavities that are driven by a two-mode squeezed microwave source. We show that, with the selective coupling of the resonator to the cavity Bogoliubov modes, the radiation-pressure type coupling can be greatly enhanced by several orders of magnitude, ...

متن کامل

Generation of Nonclassical States of the Radiation Field in the System of a Single Trapped Atom in a Cavity within the First Order of the Lamb-Dicke Approximation

In this paper, we propose a theoretical scheme for the generation of non-classical states of the cavity field in a system of a single trapped atom via controlling the Lamb-Dicke parameter. By exploiting the super-operator method, we obtain an analytical expression for the density operator of the system by which we examine the dynamical behaviors of the atomic population inversion, the phase-spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 25  شماره 

صفحات  -

تاریخ انتشار 2008